LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decoding the neural signatures of emotions expressed through sound

Photo by kaimantha from unsplash

ABSTRACT Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information… Click to show full abstract

ABSTRACT Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by sound. But some of the acoustical properties of sounds that express certain emotions vary remarkably with the instrument used to produce them, for example the human voice or a violin. Do these brain regions respond in the same way to different emotions regardless of the sound source? To address this question, we had participants (N=38, 20 females) listen to brief audio excerpts produced by the violin, clarinet, and human voice, each conveying one of three target emotions—happiness, sadness, and fear—while brain activity was measured with fMRI. We used multivoxel pattern analysis to test whether emotion‐specific neural responses to the voice could predict emotion‐specific neural responses to musical instruments and vice‐versa. A whole‐brain searchlight analysis revealed that patterns of activity within the primary and secondary auditory cortex, posterior insula, and parietal operculum were predictive of the affective content of sound both within and across instruments. Furthermore, classification accuracy within the anterior insula was correlated with behavioral measures of empathy. The findings suggest that these brain regions carry emotion‐specific patterns that generalize across sounds with different acoustical properties. Also, individuals with greater empathic ability have more distinct neural patterns related to perceiving emotions. These results extend previous knowledge regarding how the human brain extracts emotional meaning from auditory stimuli and enables us to understand and connect with others effectively.

Keywords: emotion specific; signatures emotions; decoding neural; brain regions; neural signatures; brain

Journal Title: NeuroImage
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.