We introduce an approach to reconstruction of simultaneous multi-slice (SMS)-fMRI data that improves statistical efficiency. The method incorporates regularization to adjust temporal smoothness in a spatially varying, encoding-dependent manner, reducing… Click to show full abstract
We introduce an approach to reconstruction of simultaneous multi-slice (SMS)-fMRI data that improves statistical efficiency. The method incorporates regularization to adjust temporal smoothness in a spatially varying, encoding-dependent manner, reducing the g-factor noise amplification per temporal degree of freedom. This results in a net improvement in tSNR and GLM efficiency, where the efficiency gain can be derived analytically as a function of the encoding and reconstruction parameters. Residual slice leakage and aliasing is limited when fMRI signal energy is dominated by low frequencies. Analytical predictions, simulated and experimental results demonstrate a marked improvement in statistical efficiency in the temporally regularized reconstructions compared to conventional slice-GRAPPA reconstructions, particularly in central brain regions. Furthermore, experimental results confirm that residual slice leakage and aliasing errors are not noticeably increased compared to slice-GRAPPA reconstruction. This approach to temporally regularized image reconstruction in SMS-fMRI improves statistical power, and allows for explicit choice of reconstruction parameters by directly assessing their impact on noise variance per degree of freedom.
               
Click one of the above tabs to view related content.