LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction

Photo from wikipedia

Deep learning (DL) is increasingly used to solve ill-posed inverse problems in medical imaging, such as reconstruction from noisy and/or incomplete data, as DL offers advantages over conventional methods that… Click to show full abstract

Deep learning (DL) is increasingly used to solve ill-posed inverse problems in medical imaging, such as reconstruction from noisy and/or incomplete data, as DL offers advantages over conventional methods that rely on explicit image features and hand engineered priors. However, supervised DL-based methods may achieve poor performance when the test data deviates from the training data, for example, when it has pathologies not encountered in the training data. Furthermore, DL-based image reconstructions do not always incorporate the underlying forward physical model, which may improve performance. Therefore, in this work we introduce a novel approach, called fidelity imposed network edit (FINE), which modifies the weights of a pre-trained reconstruction network for each case in the testing dataset. This is achieved by minimizing an unsupervised fidelity loss function that is based on the forward physical model. FINE is applied to two important inverse problems in neuroimaging: quantitative susceptibility mapping (QSM) and under-sampled image reconstruction in MRI. Our experiments demonstrate that FINE can improve reconstruction accuracy.

Keywords: reconstruction; image; network; ill posed; fidelity imposed

Journal Title: NeuroImage
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.