LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decoding with confidence: Statistical control on decoder maps

Photo by caiquethecreator from unsplash

In brain imaging, decoding is widely used to infer relationships between brain and cognition, or to craft brain-imaging biomarkers of pathologies. Yet, standard decoding procedures do not come with statistical… Click to show full abstract

In brain imaging, decoding is widely used to infer relationships between brain and cognition, or to craft brain-imaging biomarkers of pathologies. Yet, standard decoding procedures do not come with statistical guarantees, and thus do not give confidence bounds to interpret the pattern maps that they produce. Indeed, in whole-brain decoding settings, the number of explanatory variables is much greater than the number of samples, hence classical statistical inference methodology cannot be applied. Specifically, the standard practice that consists in thresholding decoding maps is not a correct inference procedure. We contribute a new statistical-testing framework for this type of inference. To overcome the statistical inefficiency of voxel-level control, we generalize the Family Wise Error Rate (FWER) to account for a spatial tolerance δ, introducing the δ-Family Wise Error Rate (δ-FWER). Then, we present a decoding procedure that can control the δ-FWER: the Ensemble of Clustered Desparsified Lasso (EnCluDL), a procedure for multivariate statistical inference on high-dimensional structured data. We evaluate the statistical properties of EnCluDL with a thorough empirical study, along with three alternative procedures including decoder map thresholding. We show that EnCluDL exhibits the best recovery properties while ensuring the expected statistical control.

Keywords: confidence; control; statistical control; brain; inference; decoder

Journal Title: NeuroImage
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.