LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuropeptide Y Y2 and Y5 receptors as promising targets for neuroprotection in primary neurons exposed to oxygen-glucose deprivation and in transient focal cerebral ischemia in rats

Photo from archive.org

It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is… Click to show full abstract

It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is still not well known. Therefore, we investigated the effect of NPY and YR ligands using in vitro and in vivo experimental ischemic stroke models. Our in vitro findings showed that NPY (0.5-1μM) and specific agonists of Y2R (0.1-1μM) and Y5R (0.5-1μM) but not that of Y1R produced neuroprotective effects against oxygen-glucose deprivation (OGD)-induced neuronal cell death, being also effective when given 30min after the end of OGD. The neuroprotective effects of Y2R and Y5R agonists were reversed by appropriate antagonists. Neuroprotection mediated by NPY, Y2R and Y5R agonists was accompanied by the inhibition of both OGD-induced calpain activation and glutamate release. Data from in vivo studies demonstrated that Y2R agonist (10μg/6μl; i.c.v.) not only diminished the infarct volume in rats subjected to transient middle cerebral artery occlusion (MCAO) but also improved selected gait parameters in CatWalk behavioral test, being also effective after delayed treatment. Moreover, we found that a Y5R agonist (10μg/6μl; i.c.v.) did not reduce MCAO-evoked brain damage but improved stride length, when it was given 30min after starting the occlusion. In conclusion, our studies indicate that Y5 and especially Y2 receptors may be promising targets for neuroprotection against ischemic damage.

Keywords: promising targets; glucose deprivation; targets neuroprotection; ischemia; oxygen glucose

Journal Title: Neuroscience
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.