The topology of the respiratory network in the brainstem has been addressed using different computational models, which help to understand the functional properties of the system. We tested a neural… Click to show full abstract
The topology of the respiratory network in the brainstem has been addressed using different computational models, which help to understand the functional properties of the system. We tested a neural mass model by comparing the result of activation and inhibition of inhibitory neurons in silico with recently published results of optogenetic manipulation of glycinergic neurons [Sherman, et al. (2015) Nat Neurosci 18:408]. The comparison revealed that a five-cell type model consisting of three classes of inhibitory neurons [I-DEC, E-AUG, E-DEC (PI)] and two excitatory populations (pre-I/I) and (I-AUG) neurons can be applied to explain experimental observations made by stimulating or inhibiting inhibitory neurons by light sensitive ion channels.
               
Click one of the above tabs to view related content.