Recent evidence suggests that ischemia/reperfusion (I/R) in an organ may have distance effect on the brain. In this study, the effects of renal I/R, limb I/R or both together on… Click to show full abstract
Recent evidence suggests that ischemia/reperfusion (I/R) in an organ may have distance effect on the brain. In this study, the effects of renal I/R, limb I/R or both together on the structural and function of hippocampus were evaluated and compared. Hence, rats were subjected to 2-h bilateral lower limb ischemia, 45-min bilateral renal ischemia, or combined limb and renal ischemia followed by 1-day reperfusion. At 22-h reperfusion, each rat was fixed on a stereotaxic apparatus for performing electrophysiological study on the hippocampus. The long-term potentiation (LTP) was induced by high-frequency stimulation (HFS), and paired-pulse ratio (PPR) was also monitored before and after HFS delivery. After taking blood sample and sacrificing animal, its brain was removed and preserved for stereological study. The limb I/R reduced plasma osmolality that led to synaptic excitement in the hippocampus, where there was a considerable loss of pyramidal cells and markedly impaired short- and long-term synaptic plasticity. The renal I/R largely increased plasma creatinine that might excite basal synaptic transmission. In the rats with combined limb and renal I/R, the hippocampal neuronal loss and impaired synaptic plasticity were the same as those with limb I/R, but basal synaptic transmission was lowered. In conclusion, the 2-h lower limb ischemia compared to 45-min renal ischemia induced more injurious distant effects on the hippocampus after 1-day reperfusion. The combination of renal and limb I/R did not add or potentiate hippocampal neuronal loss and synaptic plasticity impairment, whereas it decreased the basal synaptic transmission with respect to each one alone.
               
Click one of the above tabs to view related content.