LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical Subcortical Sub-Regional Shape Network Analysis in Alzheimer’s Disease

Photo from wikipedia

In this paper, by utilizing surface diffeomorphic deformations, we constructed and analyzed subcortical shape morphometric networks in 210 healthy control (HC) subjects and 175 subjects with Alzheimer's disease (AD), aiming… Click to show full abstract

In this paper, by utilizing surface diffeomorphic deformations, we constructed and analyzed subcortical shape morphometric networks in 210 healthy control (HC) subjects and 175 subjects with Alzheimer's disease (AD), aiming to identify AD-induced abnormalities in the subcortical shape network. We quantitatively analyzed pertinent network attributes of the entire network and each node. Further to this, hierarchical analyses were performed; group comparisons were conducted at the structure level first and then the sub-region level. The bilateral amygdalae, hippocampi, as well as the thalamus were all divided into multiple functionally distinct sub-regions. From the structure level analysis, we found significant HC-vs-AD group differences in the average local efficiency and average global efficiency. In addition, the local nodal efficiencies between the right thalamus and all three of the right hippocampus, right amygdala, and left thalamus, as well as that between the left amygdala and left hippocampus, decreased significantly in AD. According to the sub-regional network analyses, we observed significant AD-induced local efficiency decreases between different sub-regions within the right hippocampus itself and between the subiculum of the right hippocampus and the sub-region of the right thalamus connecting to the temporal lobe, indicating a degradation of circuit between the hippocampus, thalamus, and temporal lobe. Statistical comparisons were performed using 40,000 non-parametric permutation tests, with false discovery rate correction employed for multiple comparison correction.

Keywords: sub regional; hippocampus; network; shape; alzheimer disease; shape network

Journal Title: Neuroscience
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.