LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P)

Photo by dulhiier from unsplash

Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in… Click to show full abstract

Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a greater reduction in the oscillations. Histochemical analysis showed an age-dependent reduction in cytochrome c oxidase (COX) activity, suggesting a mitochondrial dysfunction in the 9+A30P group. A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.

Keywords: network; a30p; syn; mitochondrial dysfunction; alpha; network oscillations

Journal Title: Neuroscience
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.