LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spinal Actions of the NSAID Diclofenac on Nociceptive Transmission in Comparison to the Kv7 Channel Opener Flupirtine

Photo from wikipedia

NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs… Click to show full abstract

NSAIDs are the drugs most commonly used to alleviate pain. Despite being a heterogeneous group of compounds, all of them share a mechanism of action based on blockade of COXs enzymes, which confers them anti-inflammatory and analgesic properties. Diclofenac is a NSAID with preferred activity on COX-2 isozymes, but additionally, other targets may be implicated in its analgesic activity. Among them, diclofenac may facilitate the activity of Kv7 channels, that have been previously recognized as potential therapeutic targets in analgesia. In this study, the antinociceptive actions of diclofenac acting at the spinal level and the role of Kv7 channels in its effects were evaluated. Electrophysiological recordings of spinal reflexes and responses of dorsal horn neurons were obtained using in vitro spinal cord preparations from neonatal mice. Diclofenac, applied at clinically relevant concentrations to the entire preparation, depressed wind-up of spinal reflexes with a pattern similar to that of flupirtine, an analgesic with activity as Kv7 channel opener. Depressant actions of both compounds were strongly reduced after Kv7 channel blockade with XE-991, indicating the implication of these channels in the observed effects. Flupirtine, but not diclofenac, also reduced action potential firing of dorsal horn neurons in response to electrical activation of nociceptive afferents, suggesting differences in the actions of both compounds on Kv7 channel configurations present in sensory areas of the cord. Results demonstrate previously unknown central actions of diclofenac on Kv7 channels located in spinal circuits, expanding the knowledge about its pharmacological actions.

Keywords: channel; kv7 channels; kv7 channel; activity; channel opener

Journal Title: Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.