LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ischemia Injury induces mitochondrial permeability transition pore opening by reducing Sirt3.

Photo from wikipedia

Mitochondrial permeability transition pore (mPTP) opening is critical to mitochondrial apoptosis during ischemic injury. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance… Click to show full abstract

Mitochondrial permeability transition pore (mPTP) opening is critical to mitochondrial apoptosis during ischemic injury. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and cell death. Our previous studies have shown that Sirt3 activates superoxide dismutase 2 and forkhead box O3a to reduce cellular reactive oxygen species. However, it is unclear the interaction between Sirt3 and mPTP and the roles they play in ischemic stroke. We used the middle cerebral artery occlusion (MCAO) model, a mouse model of stroke, to examine Sirt3 and mPTP-related protein levels. We then applied lentivirus packaged Sirt3 overexpression in HT22 cells, a mouse hippocampal neuronal cell line, to investigate the underlying mechanism. We found Sirt3 protein level was decreased in the penumbra area in MCAO mice, along with an increase in mPTP related proteins, namely voltage-dependent anion channel 1 (VDAC1) and adenine nucleotide translocator 1 (ANT1). Sirt3 overexpression suppressed the increase in VDAC1, ANT1 and cleaved caspase 3 that were induced by the serum and glucose deprivation (SGD) condition. Our studies suggest that ischemic injury induced mPTP opening and apoptosis by reducing Sirt3. It helps to identify new therapeutic targets for ischemic stroke.

Keywords: mitochondrial permeability; injury; reducing sirt3; transition pore; permeability transition

Journal Title: Neuroscience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.