LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vanillin attenuates proinflammatory factors in a tMCAO mouse model via inhibition of TLR4/NF-kB signaling pathway

Photo from wikipedia

Vanillin has been reported to reduce hippocampal neuronal death in rat models of global cerebral ischemia. However, the immunoregulatory mechanism of vanillin in ischemic stroke is still unclear. To investigate… Click to show full abstract

Vanillin has been reported to reduce hippocampal neuronal death in rat models of global cerebral ischemia. However, the immunoregulatory mechanism of vanillin in ischemic stroke is still unclear. To investigate the role of vanillin in a mouse model of ischemic stroke, we administered vanillin to mice after transient middle cerebral artery occlusion (tMCAO) by tail vein injection. Vanillin reduced infarct volume and improved motor function in mice after ischemia and reperfusion. IL-1β and TNF-α were decreased in ischemic brain tissue of tMCAO mice after vanillin treatment compared with saline treatment. Similar effects were observed using the in vitro LPS-stimulated microglia cell model. Moreover, the reduced expression of proinflammatory cytokines in the vanillin group was related to TLR4/NF-κB signaling. Taken together, the findings suggest that vanillin decreased microglial activation by inhibiting the TLR4 /NF-κB signaling pathway, which reduced expression of proinflammatory cytokines IL-1β and TNF-α, and finally reduced the infarct volume and improved motor function in tMCAO mice.

Keywords: mouse model; signaling pathway; tlr4 signaling; vanillin

Journal Title: Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.