LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compound heterozygous RYR1 mutations in a preterm with arthrogryposis multiplex congenita and prenatal CNS bleeding

RYR1 mutations, the most common cause of non-dystrophic neuromuscular disorders, are associated with the malignant hyperthermia susceptibility (MHS) trait as well as congenital myopathies with widely variable clinical and histopathological… Click to show full abstract

RYR1 mutations, the most common cause of non-dystrophic neuromuscular disorders, are associated with the malignant hyperthermia susceptibility (MHS) trait as well as congenital myopathies with widely variable clinical and histopathological manifestations. Recently, bleeding anomalies have been reported in association with certain RYR1 mutations. Here we report a preterm infant born at 32 weeks gestation with arthrogryposis multiplex congenita due to compound heterozygous, previously MHS-associated RYR1 mutations, with additional signs of prenatal hemorrhage. The patient presented at birth with multiple joint contractures, scoliosis, severe thoracic rigidity and respiratory failure. He continued to depend on mechanical ventilation and tube feeding. Muscle histopathology showed a marked myopathic pattern with eccentric cores. Interestingly, the patient had additional unusual prenatal intraventricular hemorrhage, resulting in post-hemorrhagic hydrocephalus as well as epidural hemorrhage affecting the spinal cord. This report adds to the phenotypic variability associated with RYR1 mutations, and highlights possible bleeding complications in affected individuals.

Keywords: ryr1 mutations; compound heterozygous; multiplex congenita; arthrogryposis multiplex

Journal Title: Neuromuscular Disorders
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.