LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TNNT1 myopathy with novel compound heterozygous mutations

Photo from wikipedia

Nemaline myopathies are clinically and genetically heterogeneous disorders caused by several different genes. One of them is TNNT1, which was initially described in Amish families and has not been reported… Click to show full abstract

Nemaline myopathies are clinically and genetically heterogeneous disorders caused by several different genes. One of them is TNNT1, which was initially described in Amish families and has not been reported in Asian populations. Although most TNNT1 myopathies are caused by loss-of-function mutations, several recent studies have shown that missense mutations can also be pathogenic. A 16-year-old Korean boy with progressive muscle weakness visited the Seoul National University Hospital. He showed generalized myopathy, which was predominant in the paraspinal and neck muscles. Moreover, nemaline rods were observed in a muscle biopsy. Whole-exome sequencing of DNA samples of the patient and his younger brother, who had a similar phenotype, revealed novel compound heterozygous mutations in TNNT1 (c.724G>C (p.Ala242Pro) and c.611+1G>A). Sanger sequencing of cDNA extracted from muscle samples of the patient confirmed partial or total skipping of exon 11 in the splicing variant. The impact of the missense variant on muscle integrity and locomotor activity was verified using a zebrafish loss-of-function model. Here, we reported novel familial cases of TNNT1 myopathy with intermediate clinical presentations caused by compound heterozygous mutations and demonstrated their functional defects using an animal model.

Keywords: compound heterozygous; muscle; tnnt1 myopathy; heterozygous mutations; novel compound

Journal Title: Neuromuscular Disorders
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.