LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comprehensive study on impurity behavior in LHD long pulse discharges

Photo from wikipedia

Abstract Impurity behavior is studied in a variety of LHD (Large Helical Device) long pulse discharges, i.e. standard hydrogen plasmas, super dense core plasmas, helium plasmas with ICH (Ion Cyclotron… Click to show full abstract

Abstract Impurity behavior is studied in a variety of LHD (Large Helical Device) long pulse discharges, i.e. standard hydrogen plasmas, super dense core plasmas, helium plasmas with ICH (Ion Cyclotron Frequency Heating), multi-species plasmas mixed with H and He. Density scan experiments show a specific density range of impurity accumulation for only hydrogen discharges. Strong suppression of impurity accumulative behavior is observed in high temperature plasmas with high power heating. The main contributions to impurity transport are extracted by a comprehensive study on impurity behavior, i.e. investigating the critical conditions for impurity accumulation and the parameter dependences. It is found that the impurity behavior is determined by three dominant contributions, i.e. neoclassical transport mainly depending on radial electric field, turbulent transport increasing with heating power and impurity screening at high edge collisionality in the ergodic layer. The mapping of impurity behavior on n-T (electron density and temperature) space at the plasma edge shows a clear indication of the domain without impurity accumulation and provides operation scenarios to build up fusion-relevant plasmas.

Keywords: comprehensive study; pulse discharges; impurity behavior; long pulse; impurity

Journal Title: Nuclear materials and energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.