LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma cleaning of steam ingressed ITER first mirrors

Photo from wikipedia

Abstract In ITER, the first mirrors (FMs) are vulnerable to an in-vessel coolant leak which could severely diminish their optical properties. To understand the scope of this potential impact, several… Click to show full abstract

Abstract In ITER, the first mirrors (FMs) are vulnerable to an in-vessel coolant leak which could severely diminish their optical properties. To understand the scope of this potential impact, several FM samples were exposed to a steam and humidity test simulating the event in ITER. Both rhodium and molybdenum mirrors, observed a loss in specular reflectivity as a result (the loss being greater for the Mo mirror). Their surfaces were tarnished with the development a thin Rh oxide and a thick Mo oxide (120–170 nm). This study focusses on capacitively coupled radio frequency (CCRF) plasma cleaning of steam ingressed (SI) FM samples and follow their optical recovery. Plasma cleaning experiments were performed with 13.56 MHz CCRF plasma using argon and/or hydrogen as process gas (with 230 eV ion energy). Initial and final reflectivity measurements, chemical surface analysis using in vaccuo X-ray photoelectron spectroscopy, scanning electron microscopy, focused ion beam and roughness measurements, were carried out for each sample to evaluate the cleaning efficiency. Using the plasma cleaning technique, it was possible to remove the SI induced contamination from the mirror surfaces and recover their optical properties to the pristine levels. Several ‘voids/inclusions’ were seen to arise along the grain boundaries as a result of the SI procedure. The concentration of these ‘voids/inclusions’ was observed to increase till a certain point followed by a decrease with increasing cleaning time.

Keywords: first mirrors; iter first; iter; plasma cleaning; cleaning steam

Journal Title: Nuclear materials and energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.