LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CTF-R: A novel residual-based thermal hydraulic solver

Photo by rabinam from unsplash

Abstract The traditional scientific process has been revolutionized by the advent of computational modeling, but the nuclear industry generally uses “legacy codes,” which were developed early in the evolution of… Click to show full abstract

Abstract The traditional scientific process has been revolutionized by the advent of computational modeling, but the nuclear industry generally uses “legacy codes,” which were developed early in the evolution of computers. One example of a legacy code, the thermal hydraulic subchannel code CTF, is modernized in this work through the development of a novel residual-based version, CTF-R. Unlike its predecessor, CTF-R is not limited by the strict computational limitations of the early 1980’s, and can therefore be designed such that it is inherently flexible and easy to use. A case study is examined to demonstrate how the flexibility of the code can be used to improve simulation results. In this example, the coupling between the solid and liquid fields is examined. Traditionally, this coupling is modeled explicitly, which imposes numerical stability limits on the time step size. These limits are derived and it is shown that they are removed when the coupling is made implicit. Further, the development of CTF-R will enable future improvements in next generation reactor modeling, numerical methods, and coupling to other codes. Through the further development of CTF-R and other residual-based codes, state-of-the-art simulation is possible.

Keywords: ctf novel; novel residual; based thermal; ctf; thermal hydraulic; residual based

Journal Title: Nuclear Engineering and Design
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.