LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A stringy test of the Scalar Weak Gravity Conjecture

Photo by drew_hays from unsplash

Abstract We prove a version of the Weak Gravity Conjecture for 6d F-theory or heterotic string compactifications with 8 supercharges. This sharpens our previous analysis by including massless scalar fields.… Click to show full abstract

Abstract We prove a version of the Weak Gravity Conjecture for 6d F-theory or heterotic string compactifications with 8 supercharges. This sharpens our previous analysis by including massless scalar fields. The latter are known to modify the Weak Gravity Conjecture bound in two a priori independent ways: First, the extremality condition of a charged black hole is modified, and second, the test particles required to satisfy the Weak Gravity Conjecture are subject to additional Yukawa type interactions. We argue on general grounds that at weak coupling, the two types of effects are equivalent for a tower of asymptotically massless charged test particles predicted by the Swampland Distance Conjecture. We then specialize to F-theory compactified on elliptic Calabi–Yau three-folds and prove that the precise numerical bound on the charge-to-mass ratio is satisfied at weak coupling. This amounts to an intriguing coincidence of two a priori different notions of extremality, namely one based on the balance of gauge, gravitational and scalar forces for extremal (non-BPS) black holes, and the other encoded in the modular properties of certain Jacobi forms. In the presence of multiple abelian gauge group factors, the elliptic genus counting these states is a lattice quasi-Jacobi form of higher rank, and we exemplify this in a model with two abelian gauge group factors.

Keywords: weak gravity; gravity conjecture; stringy test; conjecture

Journal Title: Nuclear Physics B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.