Recently, Guo and Sun derived an identity for factorial Grothendieck polynomials which is a generalization of the one for Schur polynomials by Feher, Nemethi and Rimanyi. We analyze the identity… Click to show full abstract
Recently, Guo and Sun derived an identity for factorial Grothendieck polynomials which is a generalization of the one for Schur polynomials by Feher, Nemethi and Rimanyi. We analyze the identity from the point of view of quantum integrability, based on the correspondence between the wavefunctions of a five-vertex model and the Grothendieck polynomials. We give another proof using the quantum inverse scattering method. We also apply the same idea and technique to derive a new identity for factorial Grothendieck polynomials for rectangular Young diagrams. Combining with the Guo-Sun identity, we get a duality formula. We also discuss a q-deformation of the Guo-Sun identity.
               
Click one of the above tabs to view related content.