LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-perturbative completion of Hopf-algebraic Dyson-Schwinger equations

Photo from wikipedia

Abstract For certain quantum field theories, the Kreimer-Connes Hopf-algebraic approach to renormalization reduces the Dyson-Schwinger equations to a system of non-linear ordinary differential equations for the expansion coefficients of the… Click to show full abstract

Abstract For certain quantum field theories, the Kreimer-Connes Hopf-algebraic approach to renormalization reduces the Dyson-Schwinger equations to a system of non-linear ordinary differential equations for the expansion coefficients of the renormalized Green's function. We apply resurgent asymptotic analysis to find the trans-series solutions which provide the non-perturbative completion of these formal Dyson-Schwinger expansions. We illustrate the general approach with the concrete example of four dimensional massless Yukawa theory, connecting with the exact functional solution found by Broadhurst and Kreimer. The trans-series solution is associated with the iterative form of the Dyson-Schwinger equations, and displays renormalon-like structure of integer-repeated Borel singularities. Extraction of the Stokes constant is possible due to a property we call ‘functional resurgence’.

Keywords: schwinger equations; non perturbative; dyson schwinger; hopf algebraic

Journal Title: Nuclear Physics B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.