LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On multi-point gas injection to form an air layer for frictional drag reduction

Photo from wikipedia

Abstract Air layer drag reduction has been shown to be a feasible drag reducing technique at the laboratory and at full ship scales. In most studies, the air layers have… Click to show full abstract

Abstract Air layer drag reduction has been shown to be a feasible drag reducing technique at the laboratory and at full ship scales. In most studies, the air layers have been generated via gas injection from two-dimensional spanwise slots. However, given ship's structural considerations, it would be preferable to use discrete holes. The present study expands on the work on single orifice gas injection to multi-hole injection. When compared with slot injection, multi-point injection lead to a reduced range of gas fluxes that formed an air layer. Gas injected from a series of discrete holes can exhibit complex flow patterns, including roll-up into the core of liquid vortices that form as part of the process of injecting gas into the liquid boundary layer. The finite span and length of the model utilized for the present experiments was modest. It remains to be shown if a larger model with similar scaled up geometry (and with more beanwise holes) would enable the formation of a stable air layer with a gas flux per unit span that is similar to that required for slot injection. Nevertheless, the results presented here illustrate the complexity associated with gas injection through multiple perforations in a hull.

Keywords: gas injection; gas; drag reduction; injection; air layer

Journal Title: Ocean Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.