LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The influence of wave parameter definition over floating wind platform mooring systems under severe sea states

Photo from wikipedia

Abstract This paper explores the role of wave spectral characteristics and wave time history on the estimation of extreme mooring loads on floating offshore wind turbines. This research is applied… Click to show full abstract

Abstract This paper explores the role of wave spectral characteristics and wave time history on the estimation of extreme mooring loads on floating offshore wind turbines. This research is applied to the DeepCwind semi-submersible platform located at the BiMEP test site in the North of Spain. Extreme sea states are selected using the inverse first-order reliability method (I-FORM). Mooring loads are modelled by quasi-static and dynamic numerical approaches. Different wave time series are generated numerically for each sea state to investigate the variability in predicted peak loads. All cases simulated incorporate the combined effect of wind and waves. Differences of approximately 30% in peak loads are found for the mooring system, reaching 40–79% for the most extreme sea states. Safety factors are proposed to account for sensitivity to wave groupiness in modelling loads under extreme work conditions of the DeepCwind platform (e.g., pitch and velocity control). A comparison between theoretical and real-sea wave spectra is also modelled to investigate possible differences due to the presence of multiple spectral peaks associated with swell and wind seas. In general, results show differences below 12% in the prediction of loads between both assumptions.

Keywords: sea states; wave parameter; platform; wind; influence wave; sea

Journal Title: Ocean Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.