Abstract The modelling of the ice failure including icebreaking pattern and ice bearing capacity is an important issue in numerical simulations of ships going through level ice, in order to… Click to show full abstract
Abstract The modelling of the ice failure including icebreaking pattern and ice bearing capacity is an important issue in numerical simulations of ships going through level ice, in order to predict ship performance and ice loads. Previous studies model the shape of ice cusps assuming a simplified geometry, e.g. circular or triangular. According to the observations during full-scale ship trials, the geometry of the ice cusps is more elliptical rather than circular, with larger breaking length at the edges than that at the center. In this paper, a new ice failure model is developed which results in more realistic cusp shapes compared to existing approaches. The model is based on an analytically-derived differential equation, which is solved numerically via the Finite Difference Method (FDM). The predictions of ice cusps geometry are validated against full-scale measurement of ice cusps, obtained with an on-board stereo camera system. Satisfying agreement is shown. The ice failure model is incorporated into a numerical model for the prediction of ship performance in level ice. The predictions are compared with ship speed record obtained from a full-scale trial. It is shown that the model gives reasonable results for ship speed.
               
Click one of the above tabs to view related content.