LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic of a planing hull in regular waves: Comparison of experimental, numerical and mathematical methods

Photo from wikipedia

Abstract The unsteady planing motion in waves is a complicated problem, that can lead to uncomfortable riding situation and structural damages due to large wave-induced dynamic responses and vertical accelerations.… Click to show full abstract

Abstract The unsteady planing motion in waves is a complicated problem, that can lead to uncomfortable riding situation and structural damages due to large wave-induced dynamic responses and vertical accelerations. In the current research, this problem is investigated using different approaches, including towing tank tests, Computational Fluid Dynamics (CFD), and the 2D + t model. Results obtained from all three approaches are compared against each other in details. The spectral analysis shows that all motions can be nonlinear, but CFD and 2D + t model may predict weaker nonlinear behaviour at higher speed, especially for the case of vertical accelerations corresponding to longer waves. Interestingly, the vertical acceleration found by 2D + t model is seen to be under-predicted at moderate and long wavelengths and to be over-predicted at short waves. The values of sectional forces found by 2D + t model were compared against CFD results, showing that, while the 2D + t model computes smaller sectional forces, it can also compute negative sectional forces near the bow of the vessel at short waves when the boat exits the water. The emergence of negative sectional forces is likely to be the reason why the 2D + t model over-predicts the vertical acceleration in short waves.

Keywords: dynamic planing; model; sectional forces; planing hull; short waves; hull regular

Journal Title: Ocean Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.