LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A box model for representing estuarine physical processes in Earth system models

Photo from wikipedia

Abstract Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity… Click to show full abstract

Abstract Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. In order to realistically represent riverine freshwater inputs in Earth system models, a physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM represents the estuary exchange circulation with a two-layer box structure. It takes as input the river volume flux from the land surface model and the subsurface salinity at the estuary mouth from the ocean model. It delivers the estuarine outflow salinity and net volume flux into and out of the estuary to the ocean model. An offline test of the EBM forced with observed conditions for the Columbia River system shows good agreement with observations of outflow salinity and high-resolution simulations of the exchange flow volume flux. To illustrate the practicality of use of the EBM in an Earth system model, the EBM is implemented for all coastal grid cells with river runoff in the Community Earth System Model (CESM). Compared to the standard version of CESM, which treats runoff as an augmentation to precipitation, the EBM increases sea surface salinity and reduces stratification near river mouths. The EBM also leads to significant regional and remote changes in CESM ocean surface salinities.

Keywords: system; system models; earth system; model; salinity

Journal Title: Ocean Modelling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.