LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying Lagrangian coherent vortices in a mesoscale ocean model

Photo from wikipedia

Abstract We identify Lagrangian coherent vortices in a global mesoscale eddy-permitting ocean model using the rotation-based method of Haller et al. (2016). We present an analysis of the acute sensitivity of… Click to show full abstract

Abstract We identify Lagrangian coherent vortices in a global mesoscale eddy-permitting ocean model using the rotation-based method of Haller et al. (2016). We present an analysis of the acute sensitivity of the identification results to varying the method’s free parameters, and develop physically justified parameter choices that allow for systematic vortex identification. In contrast to prior vortex studies, we probe the broad spectrum of coherency in the ocean by determining free parameter choices that partition the spectrum into distinct coherency classes allowing for the identification of strictly coherent, moderately coherent, and leaky vortices. Our tuning methodology is grounded in a combination of sensitivity analysis, convergence tests, and consideration of the ocean model’s physics. To aid in this process, we introduce the Coherency Index a novel Lagrangian diagnostic for mathematically quantifying the degree of material coherency of a Lagrangian vortex. We aim for this manuscript and the accompanying open-access code to serve as a manual and toolset for the oceanographer interested in harnessing a rigorous Lagrangian method to uncover coherent structures in ocean models and observations.

Keywords: coherent vortices; coherency; coherent; ocean model; lagrangian coherent

Journal Title: Ocean Modelling
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.