LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity

Photo from wikipedia

Abstract We propose and numerically investigate the plasmonic whispering-gallery mode (WGM) with high-quality (Q) factor (as high as 285) and ultra-small mode volume (as low as 0 . 04 μ… Click to show full abstract

Abstract We propose and numerically investigate the plasmonic whispering-gallery mode (WGM) with high-quality (Q) factor (as high as 285) and ultra-small mode volume (as low as 0 . 04 μ m 3 ) in the hybrid plasmonic microcavity with a sandwiched and electrically controlled graphene. The theoretical results present that the resonant wavelength of hybrid plasmonic microcavity dramatically changes and the corresponding intrinsic loss exhibits a distinct peak by electrically adjusting the permittivity of graphene around the epsilon-near-zero (ENZ) point. The influence of graphene with different layers on the characteristic of hybrid plasmonic microcavity is also analyzed. As a potential application, the plasmonic WGM microcavity with the sandwiched graphene could be applied for a refractometer with the sensitivity of higher than 1000 nm per refraction index unit (nm/RIU), and large figure of merit. The sensitivity can also be tuned by the electrically controlled graphene.

Keywords: mode; microcavity; graphene; sensitivity; plasmonic whispering; whispering gallery

Journal Title: Optics Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.