LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective sensitivity of Mueller imaging for tissue scattering over absorption changes in cancer mimicking phantoms

Photo by roberto_sorin from unsplash

Abstract Tissue characterization using optical polarimetry, especially Mueller imaging is receiving sustained interest due to its potential in achieving optical contrast between normal and malignant variations. This is particularly important… Click to show full abstract

Abstract Tissue characterization using optical polarimetry, especially Mueller imaging is receiving sustained interest due to its potential in achieving optical contrast between normal and malignant variations. This is particularly important in identifying the margin of malignant growth in suspected tissue regions for accurate surgical removal, or in aiding the sampling procedure during biopsy. The sensitivity of Mueller matrix derived depolarization index to the combined effects of changes in scattering and absorption occurring in a cancerous growth is illustrated in this study. Depolarization imaging is shown to be useful in demarcating the boundary of two regions of differing optical properties using a tissue phantom, modeled according to the changes expected during cancerous growth in tissue. Tissue scattering and absorption are expected to generally increase with the nuclear size change and crowding as well as angiogenesis associated with malignancy. We have observed that there is selective sensitivity for the Mueller elements and derived depolarization index to tissue scattering over absorption in the object field. Although the scattering and absorption are expected to increase and decrease depolarization respectively, the optical contrast of Mueller images and the derived depolarization index between normal and cancerous tissue is found appreciable in this region.

Keywords: scattering absorption; sensitivity mueller; tissue scattering; tissue

Journal Title: Optics and Lasers in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.