LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells

Photo from wikipedia

Abstract Reducing the light absorption loss of ultrathin crystalline silicon (c-Si) solar cells is significant to achieve high photocurrent density and photoelectric conversion efficiency. Here, we designed and simulated ultrathin… Click to show full abstract

Abstract Reducing the light absorption loss of ultrathin crystalline silicon (c-Si) solar cells is significant to achieve high photocurrent density and photoelectric conversion efficiency. Here, we designed and simulated ultrathin c-Si cells with front pyramids and double-sided pyramids. By adjusting the shape of pyramids, the maximum photocurrent densities reach 36.23 and 37.71 mA/cm2 for the cells with front pyramids and double-sided pyramids, respectively. The reflectivity spectrum indicates that the double-sided pyramidal architecture remarkably suppresses light escape and then enhances the light absorption in long wavelength range, which makes the absorption approach the Yablonovitch limit. The calculated conversion efficiencies of planar, front and double-sided textured cells are 16.94%, 19.65% and 20.45% respectively. Additionally, the difference between randomly and periodically textured cells was investigated and the results show that although the randomly front pyramid texture has a better light absorption in the range of 900–1200 nm, the periodically double-sided pyramids texture exhibit almost the same light absorption in the whole range as the random one. Besides, the solar cells with double-sided pyramids show extremely small angular dependence of incident light. Thus, the double-sided light trapping structure designed in the present work provides an alternative pathway to improve the performance of ultrathin c-Si cells.

Keywords: solar cells; double sided; light absorption; crystalline silicon; ultrathin crystalline

Journal Title: Optics and Laser Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.