Abstract Fatigue property improvement for automotive components such as crankshafts can be achieved through material selection and tailored surface design. Microalloyed steels are of high interest for automotive applications due… Click to show full abstract
Abstract Fatigue property improvement for automotive components such as crankshafts can be achieved through material selection and tailored surface design. Microalloyed steels are of high interest for automotive applications due to their balanced properties, excellent hardenability and good machinability. Lasers facilitate efficient and precise surface processing and understanding the laser-material-property interrelationships is the key to process optimisation. This work examines microstructural development during laser surface treatment of 44MnSiVS6 microalloyed steel and the r esulting mechanical properties. Laser beam shaping techniques are employed to evaluate the impact of beam shaping on the process. It revealed that ferrite structures remain in the treated area surrounded by martensite due to insufficient heating and dwell time of carbon diffusion.
               
Click one of the above tabs to view related content.