Abstract Electrical transport properties of graphene can be modulated by different controlled doping methods in order to make it useful for practical applications. Here we report a comparative study of… Click to show full abstract
Abstract Electrical transport properties of graphene can be modulated by different controlled doping methods in order to make it useful for practical applications. Here we report a comparative study of electron-beam (e-beam) irradiated and ultraviolet (UV) irradiated graphene field effect transistors (FETs) for different doses and exposure times. We observed red shift in Raman spectra of graphene under e-beam irradiation which represents n-type doping while a divergent trend has been identified for UV irradiations which signify p-type doping. These results are further confirmed by the electrical transport measurements where the Dirac point shifts towards negative backgate voltage (i.e. n-type doping) upon e-beam exposure and shifted towards positive backgate voltage (i.e. p-type doping) under ultraviolet irradiation. Our approach reveals the dual characteristics of graphene FETs under these irradiation environments.
               
Click one of the above tabs to view related content.