LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The influence of aqueous sodium dodecyl sulphate solution in the photoresponsivity of nitrogen doped graphene oxide photodetector

Photo by homajob from unsplash

Abstract The homogeneity and agglomeration in graphene based photodetector plays an important role in the photoconduction. The influence of sodium dodecyl sulphate (SDS) solution in nitrogen doped graphene oxide (N-GO)… Click to show full abstract

Abstract The homogeneity and agglomeration in graphene based photodetector plays an important role in the photoconduction. The influence of sodium dodecyl sulphate (SDS) solution in nitrogen doped graphene oxide (N-GO) is studied based on the photoresponsivity behaviour. One step hydrothermal method and drop casting technique are utilized to obtain N-GO photodetectors. High photoresponsivity about 1000 folds is achieved in N-GO prepared with SDS solution (N-GO/SDS) compared to the N-GO prepared without SDS solution. Raman spectrum also revealed a high intense D and G band as well as a slightly broaden 2D band due to sp 2 hybridization. The fabricated device has exhibited wide range of responsivity to infrared (IR) laser 974 nm pulse and illumination. Real time current measurement in N-GO and current–voltage ( I-V ) characteristics in N-GO/SDS showed a significant photoconduction due to laser 974 nm illumination. The external quantum efficiency (EQE) in the N-GO/SDS solution is about 394830% compared to N-GO prepared without SDS, which is only 272%. The evaluated fall time at frequency modulation of 0.1 and 1 Hz for direct current (dc) bias voltage of 5.0 V found to be shorter compared to that of 2.5 V, whereas the fall time at high frequency modulation at 5000 Hz exhibited similar time around 77 μs.

Keywords: sds solution; nitrogen doped; photoresponsivity; dodecyl sulphate; sodium dodecyl; solution

Journal Title: Optical Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.