LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optothermally controllable multiple high-order harmonics generation by Ge2Sb2Te5-mediated Fano clusters

Photo from wikipedia

Abstract Substantial enhancement of nonlinear high-order harmonics generation based on Fano-resonant nanostructures has received growing interest due to their promising potential for developing integrated and advanced next-generation nanophotonic devices. In… Click to show full abstract

Abstract Substantial enhancement of nonlinear high-order harmonics generation based on Fano-resonant nanostructures has received growing interest due to their promising potential for developing integrated and advanced next-generation nanophotonic devices. In this study, going beyond conventional subwavelength structures, we propose an optothermally functional hetero-metallodielectric asymmetric eight-member octamer cluster composed of a central silicon nanodisk and peripheral disks with a phase-change material (Ge2Sb2Te5). Using full electromagnetic calculations, we show that in the amorphous phase of the surrounding nanoparticles, the oligomer acts as an all-dielectric cluster, while in the crystalline regime, the octamer turns into a hybrid metallodielectric assembly. Exploiting the exquisite ability of supporting distinct Fano lineshapes at different wavelengths depending on the phase of Ge2Sb2Te5, we showed the generation of both second and third harmonics at amorphous and crystalline phases of GST nanodisks, respectively with the produced harmonic wavelengths of 425 nm and 317 nm, respectively. Our calculations for the corresponding conversion efficiencies revealed significant enhancements as ηSHG = 0.0081% and ηTHG = 0.012% for SHG and THG, respectively. Such an exquisite feature of multiresonant optothermally tunable cluster allows generation of several harmonics with substantial intensities using a single system for future photonics applications.

Keywords: harmonics generation; generation; order harmonics; high order; ge2sb2te5; harmonics

Journal Title: Optical Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.