LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects

Photo by cdc from unsplash

Abstract The nonlinear optical (NLO) properties of native defect-rich ZnO single crystals were studied in details within the excitation of the continuous wave (CW) and pulsed laser radiation at 532 nm… Click to show full abstract

Abstract The nonlinear optical (NLO) properties of native defect-rich ZnO single crystals were studied in details within the excitation of the continuous wave (CW) and pulsed laser radiation at 532 nm (2.33 eV). Analysis of the experimental data of optical elastic scattering, Fourier transform infrared (FTIR), near infrared–visible–ultraviolet (NIR–Vis–UV) spectra recorded in reflection and absorption modes, and data of photoluminescence (PL) spectroscopy confirmed the contribution of both intrinsic defects and their clusters, being determined before by neutron diffraction and XRD analysis. It was shown that the high sensitivity of the NLO diagnostics via self-action of a laser beam is due to the resonant excitation of the deep defects states at wavelength 532 nm. It was also demonstrated the correlation of the real and imaginary parts of the cubic NLO susceptibility with PL and FTIR spectroscopies data dealing with the defect bands manifestation, while the elastic optical scattering and Vis-NIR spectroscopy data – with the intrinsic defect content. High photoinduced polarizabilities of the excited states provide application of the refractive NLO response and the optical elastic scattering indicatrices analysis as an express nondestructive technique to reveal the deep defects content in the bulk ZnO.

Keywords: bulk zno; response; intrinsic defects; zno; spectroscopy; nonlinear optical

Journal Title: Optical Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.