LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of growth parameters and investigations on the physico-chemical properties of an organometallic guanidinium chromate single crystal for nonlinear optical and optical limiting applications

Photo from wikipedia

Abstract Guanidinium chromate, a semi- organic nonlinear optical crystal has been successfully synthesized and grown adopting solvent evaporation method using deionized water as solvent at a constant temperature. Solubility of… Click to show full abstract

Abstract Guanidinium chromate, a semi- organic nonlinear optical crystal has been successfully synthesized and grown adopting solvent evaporation method using deionized water as solvent at a constant temperature. Solubility of the synthesized guanidinium chromate crystal was experimentally tested using various solvents at different temperatures and solubility data was determined from deionized water, as the solute dissolved completely only in water solvent. In addition, metastable zone width and induction period values were determined in order to optimize the growth parameters. Single crystal X-ray diffraction study confirmed the crystal structure and lattice parameters of the grown crystal. The presence of expected functional groups of the titular material was identified by FT-IR spectroscopic study. The optical transmittance spectrum of guanidinium chromate has been recorded using UV–vis–NIR spectral analysis and its linear optical constants such as the absorption coefficient, band gap, extinction coefficient, refractive index and electrical susceptibility have been calculated. The thermal analysis assessed by TG-DTA reveals that the title compound is thermally stable up to 184 °C. Nd: YAG laser (1064 nm) was utilized to find out the laser damage threshold of the grown crystal. The third order nonlinear optical property of the title crystal was investigated in detail by Z-scan technique using Nd:YAG laser at 532 nm. The encouraging result of the Z-scan studies confirms that the title crystal might serve as a possible candidate for applications such as photonic devices, optical switches and optical power limiters. Optical limiting study reveals that the transmitted output energy step-up linearly with respect to the increasing input energy at lower power realms and deviation of linearity is observed beyond the saturation point.

Keywords: crystal; growth parameters; nonlinear optical; guanidinium chromate

Journal Title: Optical Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.