LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Titania-carbon nanocomposite as a saturable absorber for generation passively ytterbium-mode locked pulses

Photo from wikipedia

Abstract Passively pulse dual-wavelength ytterbium-doped fiber laser (YDFL) around 1 μm utilizing titania–carbon nanocomposite (TiO2–C NC) thin film as the optical modulator is experimentally demonstrated. The TiO2–C NC thin-film reveals great… Click to show full abstract

Abstract Passively pulse dual-wavelength ytterbium-doped fiber laser (YDFL) around 1 μm utilizing titania–carbon nanocomposite (TiO2–C NC) thin film as the optical modulator is experimentally demonstrated. The TiO2–C NC thin-film reveals great nonlinear saturable absorption characteristics with a transmission difference of 24.06% at the lasing emission around the 1 μm region. Stable self-starting mode-locked emission with a pulse of ~8 ns and a repetition rate of 30.7 MHz was achieved at threshold exciting power of about 115 mW. By adapting the polarization controller (PC) together with the pump power, fundamental, third, and sixth harmonic frequencies can be switched to each other. The corresponding pulse durations to the third and sixth harmonic mode-locked were 6.8 and 1.8 ns, respectively. The corresponding maximum output power was 1.8 mW. This work opens up another way to build cost-effective, greatly stable optical modulators, and presents the option to build novel nanocomposite-based photonic devices with TiO2–C NC.

Keywords: mode locked; mode; carbon nanocomposite; nanocomposite saturable; titania carbon

Journal Title: Optical Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.