LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biotite geochemistry and its implication on the temporal and spatial difference of Cu and Mo mineralization at the Xiaokele porphyry Cu-Mo deposit, NE China

Photo by reganography from unsplash

Abstract The Late Jurassic large Xiaokele porphyry Cu-Mo deposit is newly discovered in the northern Great Xing’an Range, NE China. Both Cu and Mo mineralizations have occurred in the potassic… Click to show full abstract

Abstract The Late Jurassic large Xiaokele porphyry Cu-Mo deposit is newly discovered in the northern Great Xing’an Range, NE China. Both Cu and Mo mineralizations have occurred in the potassic stage and are present in the potassic zone, but only Mo (Cu negligible) mineralization has been developed in the phyllic stage and is present in the phyllic zone. The cause for such temporal and spatial difference of Cu and Mo mineralization at Xiaokele remains unclear. In this study, biotite major element compositions were studied to reveal the magmatic-hydrothermal processes, and the temporal and spatial difference of Cu and Mo mineralization at Xiaokele. Biotite geochemical data show that the magmatic biotites (Bi-I), and the potassic-stage (Bi-II) and phyllic-stage (Bi-III) hydrothermal biotite are Mg-biotites, and that mineralization at Xiaokele occurred under 52–86 MPa (equivalent to 1.95–3.32 km depth). Calculated oxygen fugacity of Bi-I, Bi-II, and Bi-III biotites are all above nickel-nickel oxide (NNO) oxygen buffer, suggesting that these biotites were formed under oxidizing conditions. The decreasing Cl and largely constant F content from Bi-I, Bi-II to Bi-III result in an increasing trend of IV(F/Cl), indicating different elemental behavior between F and Cl during the magmatic-hydrothermal fluid evolution. Given that Cl content is a key Cu-transporting ligand in porphyry type mineral systems, the decreasing Cl content in Bi-III indicates lower Cu transporting capacity in the phyllic stage, resulting in the negligible Cu mineralization in the phyllic zone. Since F is important for Mo transport in hydrothermal systems, we conclude that the constant F content reflects stable Mo transporting capacity in the fluids, resulting in significant Mo mineralization in both the potassic and phyllic zones. Our results show that biotite geochemistry can be used to explain the temporal and spatial distribution of Cu and Mo mineralization in porphyry Cu-Mo systems.

Keywords: mineralization xiaokele; spatial difference; geochemistry; temporal spatial; difference mineralization; mineralization

Journal Title: Ore Geology Reviews
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.