Abstract In this work, we present and support the positive influence of 1,8-diiodooctane (DIO) as processing additive for the fabrication of solution processed near infrared (NIR) organic photodiodes (OPDs) based… Click to show full abstract
Abstract In this work, we present and support the positive influence of 1,8-diiodooctane (DIO) as processing additive for the fabrication of solution processed near infrared (NIR) organic photodiodes (OPDs) based on the spray-coated blend of [6,6]phenyl-C70-butyric acid methyl ester (PC70BM) and poly[(2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-diox-opyrrolo[3,4-c]pyrrole-1,4-diyl)-alt-([2,2’:5′,2″-terthioph-ene]-5,5″-diyl)] (PDPP3T). Transmission electron microscopy (TEM) analysis show that the use of DIO improves donor–acceptor interfaces in the bulk heterojunction (BHJ) layer. Besides the enhancement of electron/hole transport pathways that leads to higher efficiencies, it reduces significantly the roughness of spray coated layers. The External Quantum Efficiency (EQE) is increased up to 35% at 900 nm and the dark current is decreased one order of magnitude in comparison to the reference down to 20 nA/cm2 at -5 V. The OPD's detectivity is increased from 1.66 × 1011 Jones to 3.34 × 1012 Jones and the linearity response is improved. A comprehensive morphological and electro-optical characterization of the generated layers and devices is the main focus of this work.
               
Click one of the above tabs to view related content.