LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Red-light-emitting electrochemical cells based on cationic iridium complexes with phenanthroimidazole-type ancillary ligand

Photo by ale_s_bianchi from unsplash

Abstract Red-emitting cationic iridium complexes, namely, [Ir(ppy)2(Qtpi)]PF6 (Complex 1) and [Ir(piq)2(Qtpi)]PF6 (Complex 2) were synthesized using the ancillary ligand 2-(quinolin-2-yl)-1-(p-tolyl)-1H-phenanthro[9,10-d]imidazole (Qtpi) and 2-phenylpyridine (Hppy) and 1-phenylisoquinoline (Hpiq) as cyclometalating ligands.… Click to show full abstract

Abstract Red-emitting cationic iridium complexes, namely, [Ir(ppy)2(Qtpi)]PF6 (Complex 1) and [Ir(piq)2(Qtpi)]PF6 (Complex 2) were synthesized using the ancillary ligand 2-(quinolin-2-yl)-1-(p-tolyl)-1H-phenanthro[9,10-d]imidazole (Qtpi) and 2-phenylpyridine (Hppy) and 1-phenylisoquinoline (Hpiq) as cyclometalating ligands. In acetonitrile solution, Complex 1 emitted orange light, centered at 614 nm, whereas Complex 2 gave rise to orange-red emission centered at 603 and a shoulder peak at 630 nm. Extended π-conjugation on the phenylpyridine ligand in Complex 2 lowered the energy-gap, leading to a red-shift the emission compared to that of Complex 1. A light-emitting electrochemical cell (LEC) fabricated with Complex 1 emitted red light with an emission peak at 618 nm and Commission Internationale de L'Eclairage (CIE) coordinates of (0.59, 0.36), respectively, with corresponding values of 692 nm and (0.56, 0.28) for Complex 2. The LEC based on Complex 1 demonstrated superior performance, with a maximum luminance and current efficiency of 808 cd m−2 and 0.73 cd A−1, respectively.

Keywords: ancillary ligand; cationic iridium; light emitting; iridium complexes; ligand; emitting electrochemical

Journal Title: Organic Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.