LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accumulated charge measurement using a substrate with a restricted-bottom-electrode structure

Photo by mybbor from unsplash

Abstract Accumulated charge measurement (ACM) is a new experimental technique for organic semiconductors to evaluate the charge injection barrier at the semiconductor–metal interface directly using a metal–insulator–semiconductor–metal (MISM) capacitor. In… Click to show full abstract

Abstract Accumulated charge measurement (ACM) is a new experimental technique for organic semiconductors to evaluate the charge injection barrier at the semiconductor–metal interface directly using a metal–insulator–semiconductor–metal (MISM) capacitor. In this technique, the precise estimation of the electrostatic capacity of the insulator layer (CI) is required for the analysis. The information of this parameter is, in principle, included in the ACM data; however, it is not directly evaluated because of the error resulting from the charge-spreading effect in an organic MISM capacitor with an unrestricted electrode structure. Therefore, the CI in previous ACM experiments has been independently estimated from the area of the electrode. In this study, a novel design of a substrate with a restricted-bottom-electrode structure is reported. Using the newly designed substrate, it was possible to suppress the charge-spreading effect and successfully estimate precise values of CI directly from the ACM data. Subsequently, it was possible to evaluate the injection barriers at the metal-free phthalocyanine (H2Pc)–Ag and pentacene–Au interfaces, which were 0.4 and 0.15 eV, respectively. The built-in potentials in the semiconductor layer were also determined for the samples used in the measurement.

Keywords: electrode; electrode structure; measurement; charge; substrate

Journal Title: Organic Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.