LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perovskite solar cells based on the synergy between carbon electrodes and polyethylene glycol additive with excellent stability

Photo from wikipedia

Abstract The quality of the photoactive layer gravely affects the characteristics and stabilities of photovoltaic device. Here, by introducing polyethylene glycol (PEG) into the methylammonium lead trihalide (MAPbI3) precursor solution,… Click to show full abstract

Abstract The quality of the photoactive layer gravely affects the characteristics and stabilities of photovoltaic device. Here, by introducing polyethylene glycol (PEG) into the methylammonium lead trihalide (MAPbI3) precursor solution, we fabricate high-quality MAPbI3 perovskite film with high coverage and large grain size. By adjusting the PEG concentration into the perovskite film, the hole-conductor-free mesoporous perovskite solar cell with carbon electrode exhibits a boosted power conversion efficiency of 11.62%, which originates primarily from the enhancements of light absorption and acceleration of carriers transfer. Meanwhile, hygroscopic PEG protects the perovskite film from moisture, which leads to the perovskite film and corresponding device exhibit superior stability. This work confirms a high-efficiency and feasible strategy using polymer materials to enhance the performance in power conversion efficiency and stability of perovskite solar cells.

Keywords: perovskite solar; perovskite film; polyethylene glycol; stability; solar cells

Journal Title: Organic Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.