Abstract Terpolymers consisting of three monomers with one electron donor unit and two electron acceptor units are promising p-type polymers for polymer solar cells (PSCs) because the incorporation of a… Click to show full abstract
Abstract Terpolymers consisting of three monomers with one electron donor unit and two electron acceptor units are promising p-type polymers for polymer solar cells (PSCs) because the incorporation of a third monomer into a copolymer backbone provides synergetic effect on physical properties such as absorption ability, charge transport, and photovoltaic performance. Currently, novel p-type terpolymers need to be developed for high-efficiency PSCs, which can be processed with eco-friendly non-halogenated solvents. In this study, a new series of terpolymers composed of 4,8-di(2,3-didecylthiophen-5-yl)-benzo[1,2-b:4,5-b′]dithiophene (BDT), 4,7-di(thien-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (DTffBT), and benzo[1,2-c:4,5-c0]dithiophene-4,8-dione (BDD) segments was synthesized and characterized for high-performance PSCs processed with non-halogenated solvents. PBDTBD terpolymers (i.e., PBDTBD-25, PBDTBD-50, and PBDTBD-75) were synthesized by adjusting different ratios of DTffBT to BDD segment (25%, 50%, and 75% of DTffBT). PBDTBD terpolymers exhibited excellent solubility in non-halogenated solvents. The optical, electrochemical, and morphological properties of PBDTBD terpolymers were successfully controlled by modulating the molar ratio of DTffBT and BDD. Moreover, a PBDTBD-50:IT-4F blended film showed homogeneous film with a favorable face-on orientation. The PBDTBD-50:IT-4F blended film showed excellent hole and electron mobility, which resulted in a superior carrier balance. PBDTBD-50-based PSCs, processed with o-xylene, achieved the highest PCE of 10.03%, which is four times higher than those of copolymer-based PSCs. The novel terpolymers composed of one electron donor unit and two electron acceptor units are expected to make a considerable contribution to the development of high-performance PSCs.
               
Click one of the above tabs to view related content.