LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-performance polymer solar cells based on terpolymer composed of one donor and two acceptors processed with non-halogenated solvent

Photo from wikipedia

Abstract Terpolymers consisting of three monomers with one electron donor unit and two electron acceptor units are promising p-type polymers for polymer solar cells (PSCs) because the incorporation of a… Click to show full abstract

Abstract Terpolymers consisting of three monomers with one electron donor unit and two electron acceptor units are promising p-type polymers for polymer solar cells (PSCs) because the incorporation of a third monomer into a copolymer backbone provides synergetic effect on physical properties such as absorption ability, charge transport, and photovoltaic performance. Currently, novel p-type terpolymers need to be developed for high-efficiency PSCs, which can be processed with eco-friendly non-halogenated solvents. In this study, a new series of terpolymers composed of 4,8-di(2,3-didecylthiophen-5-yl)-benzo[1,2-b:4,5-b′]dithiophene (BDT), 4,7-di(thien-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (DTffBT), and benzo[1,2-c:4,5-c0]dithiophene-4,8-dione (BDD) segments was synthesized and characterized for high-performance PSCs processed with non-halogenated solvents. PBDTBD terpolymers (i.e., PBDTBD-25, PBDTBD-50, and PBDTBD-75) were synthesized by adjusting different ratios of DTffBT to BDD segment (25%, 50%, and 75% of DTffBT). PBDTBD terpolymers exhibited excellent solubility in non-halogenated solvents. The optical, electrochemical, and morphological properties of PBDTBD terpolymers were successfully controlled by modulating the molar ratio of DTffBT and BDD. Moreover, a PBDTBD-50:IT-4F blended film showed homogeneous film with a favorable face-on orientation. The PBDTBD-50:IT-4F blended film showed excellent hole and electron mobility, which resulted in a superior carrier balance. PBDTBD-50-based PSCs, processed with o-xylene, achieved the highest PCE of 10.03%, which is four times higher than those of copolymer-based PSCs. The novel terpolymers composed of one electron donor unit and two electron acceptor units are expected to make a considerable contribution to the development of high-performance PSCs.

Keywords: pscs; donor; non halogenated; performance; electron; high performance

Journal Title: Organic Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.