LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Benzodithiophene-based small molecules with various termini as hole transporting materials in efficient planar perovskite solar cells

Photo from wikipedia

Abstract In this study we prepared four benzodithiophene (BDT)-based small organic molecules presenting bithiophene (TT), thiophene (FT), carbazole (CB), and triphenylamine (TPA) units, respectively, as termini, and used them as… Click to show full abstract

Abstract In this study we prepared four benzodithiophene (BDT)-based small organic molecules presenting bithiophene (TT), thiophene (FT), carbazole (CB), and triphenylamine (TPA) units, respectively, as termini, and used them as hole transporting materials for perovskite solar cells (PSCs). The high degrees of planarity of these BDT-based small molecules imparted them with high degrees of stacking and charge transport. These small molecules had suitable optical properties and energy level alignments for use in PSCs based on MAPbI3, with compact-TiO2 as the electron transporting layer and a BDT-based material as the hole transporting layer, in a n–i–p structure. Among our tested BDT-based materials, the PSC incorporating BDT-TT had the best performance, with an average power conversion efficiency of 13.63%.

Keywords: hole transporting; bdt based; small molecules; transporting materials; based small

Journal Title: Organic Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.