LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic small-molecule heterointerface for use in transistor-type non-volatile memory

Photo by kellysikkema from unsplash

Abstract A chargeable layer is an essential element for charge transfer and trapping in a transistor-based non-volatile memory device. Here we demonstrate that a heterointerface layer comprising of two different… Click to show full abstract

Abstract A chargeable layer is an essential element for charge transfer and trapping in a transistor-based non-volatile memory device. Here we demonstrate that a heterointerface layer comprising of two different small molecules can show electrical memory characteristics. The organic heterointerface layer was fabricated with a pentacene and tris(8-hydroxyquinoline) aluminum (Alq3) layers by sequential vapor deposition without breaking the vacuum state. Pentacene was adopted as the active layer on the top, and Alq3 was used as the bottom layer for charge trapping. The bottom-gate top-contact transistor with an organic heterointerface layer showed distinct non-volatile memory behaviors and showed high air stability and reliability. We investigated the energy structure of the pentacene/Alq3 heterointerface layer to reveal the operation mechanism of the non-volatile memory and suggested that the writing/erasing gate bias-dependent energy barrier originating from the difference between the energy levels of the pentacene and Alq3 layers controls the charge transfer at the heterointerface layer. Our approach suggests a simple way to fabricate heterointerface layers for organic non-volatile memory applications with high air stability and reliability.

Keywords: non volatile; memory; volatile memory; heterointerface layer; heterointerface

Journal Title: Organic Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.