LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small molecule ternary solar cell with two synergistic electron acceptors for enhanced photovoltaic performance

Photo from wikipedia

Abstract In recent years, tremendous progresses have been achieved for solution processed organic solar cells (OSCs). The strategy of adding a third component to fabricate ternary solar cells has emerged… Click to show full abstract

Abstract In recent years, tremendous progresses have been achieved for solution processed organic solar cells (OSCs). The strategy of adding a third component to fabricate ternary solar cells has emerged as an effective method to enhance the power conversion efficiency (PCE) of devices. Furthermore, small molecules feature as lower viscosity and excellent repeatability which facilitate the effective morphology control during fabrication process for enhanced photovoltaic performance. Herein, we report a series of ternary solar cells based on a liquid crystal molecule BTR and two electron acceptors of PC71BM and Y6. These molecules show complementary absorption to broaden spectra coverage and form energy levels cascade for efficient charge transfer. Meanwhile, thanks to the improved molecular packing and formed efficient charge transport network in the ternary blend film, the optimal ternary device possesses the improved charge dynamics and suppressed charge recombination. Thus, ternary solar cells deliver the highest PCE of 11.82% with simultaneously enhanced parameters of JSC, VOC and FF. This finding further illustrates the important roles of synergistic effect of fullerenes and non-fullerene acceptors in fabricating highly efficient ternary solar cells.

Keywords: solar cells; photovoltaic performance; electron acceptors; enhanced photovoltaic; ternary solar

Journal Title: Organic Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.