LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Early COVID-19 Quarantine: A Machine Learning Approach to Model What Differentiated the Top 25% Well-Being Scorers

Photo from wikipedia

Abstract This study focused on the interaction of demographics and well-being. Diener's subjective well-being (SWB) was successfully validated with Exploratory Graph Analysis and Confirmatory Factor Analysis to track well-being differences… Click to show full abstract

Abstract This study focused on the interaction of demographics and well-being. Diener's subjective well-being (SWB) was successfully validated with Exploratory Graph Analysis and Confirmatory Factor Analysis to track well-being differences of the COVID-19 quarantined individuals. Six tree-based Machine Learning models were trained to classify top 25% SWB scorers during COVID-19 quarantine, after data-splitting (train 70%, test 30%). The model input variables were demographics, to avoid overlapping of inputs-outputs. A 10-fold cross-validation method (70%–30%) was then implemented in the training session to select the optimal Machine Learning model among the six tested. A CART classification was the optimal algorithm (Train-Accuracy = 0.77, Test-Accuracy = 0.75). A clean, three-node tree suggested that if someone spends time on perceived creative activities during the COVID-19 quarantine, under clearly described conditions, he/she had high probabilities to be a top subjective well-being scorer. The key importance of creative activities was subsequently cross-validated with three different model configurations: (1) a different tree-based model (Test-Accuracy =0.75); (2) a different operationalization of subjective well-being (Test-Accuracy =0.75) and (3) a different construct (depression; Test-Accuracy =0.73). This is an integrative approach to study individual differences in subjective well-being, bridging Exploratory Graph Analysis and Machine Learning in a single research cycle with multiples cross-validations.

Keywords: subjective well; accuracy; machine; model; machine learning; covid quarantine

Journal Title: Personality and Individual Differences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.