LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Climatic and oceanic changes during the Middle-Late Ordovician transition in the Tarim Basin, NW China and implications for the Great Ordovician Biodiversification Event

Photo from wikipedia

Abstract The Middle-Late Ordovician transition (Darriwilian to Sandbian Age) witnessed a major pulse of the Great Ordovician Biodiversification Event (GOBE) and distinctive oceanic geochemical fluctuations, such as coeval negative C… Click to show full abstract

Abstract The Middle-Late Ordovician transition (Darriwilian to Sandbian Age) witnessed a major pulse of the Great Ordovician Biodiversification Event (GOBE) and distinctive oceanic geochemical fluctuations, such as coeval negative C and Sr isotope excursions. In this study, investigations into geochemical variations, notably the Hg abundance (or Hg/TOC), have been carried upon the organic-rich black shale of the Middle-Upper Ordovician Saergan Formation to unravel the causes of this pulse. Based on these data, three phases were identified. Phase 1 (0 to 3 m) is characterized by rising Hg/TOC (up to 138 ppb/wt%) and Ti/Al values as well as high CIAcorr (corrected chemical index of alteration) values (68.9–72.3) with negligible enrichment of redox sensitive elements (RSE) and nutrient elements (e.g. U ≤ 5.2 ppm, V ≤ 153 ppm, Mo ≤ 1.8 ppm, P2O5 ≤ 0.2%), suggesting intensified volcanism, which could have emitted significant amounts of greenhouse gases, thereby leading to climate warming. In contrast, Phase 2 (3 to 11 m) is characterized by decreasing Hg/TOC and Ti/Al ratios, relatively low though slightly fluctuating CIAcorr values, generally depleted in RSE (except moderately enriched U up to 14.6 ppm) and increased P/Al and Ba/Al ratios, implying weakening volcanic activity and subsequent climate cooling and the potential for improved seawater ventilation as a result of oceanic upwelling. Phase 3 (Sandbian Age: 11–13 m) witnessed continuous decrease in Hg/TOC ratio, an increase in Ti/Al and CIAcorr values, fairly low values of RSE enrichment and P/Al and Ba/Al ratios, indicating recurrent climate warming, and the potential for slowed oceanic circulation and attenuated upwelling of nutrient-rich deep waters onto the shallow shelf. These changes could have diminished bioproductivity and organic output onto the seafloor. This study offers insights into volcanic-climatic-oceanic interactions during a major pulse of the GOBE around the Middle-Late Ordovician transition while black shales were extensively deposited.

Keywords: middle late; late ordovician; ordovician biodiversification; ordovician transition; great ordovician

Journal Title: Palaeogeography, Palaeoclimatology, Palaeoecology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.