LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amentoflavone isolated from Selaginella sellowii Hieron induces mitochondrial dysfunction in Leishmania amazonensis promastigotes.

Photo from wikipedia

Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new… Click to show full abstract

Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 μM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.

Keywords: amazonensis; amentoflavone; leishmania amazonensis; mitochondrial dysfunction; selaginella; amazonensis promastigotes

Journal Title: Parasitology international
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.