LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling the size of fragrance microcapsules using designed agitator paddles: Experiment and CFD simulation

Photo by miskasage from unsplash

Abstract Controlling the size of fragrance microcapsules using designed agitator paddles was investigated and studied by CFD simulation. First, different fluid flows were established by varying stirring speeds, reactor scales,… Click to show full abstract

Abstract Controlling the size of fragrance microcapsules using designed agitator paddles was investigated and studied by CFD simulation. First, different fluid flows were established by varying stirring speeds, reactor scales, and agitator paddle design, and the effects of each on particle size and distribution of prepared microcapsules were determined. The experimental results showed that the pattern design of orifices in the plate paddles control the flow field well. Narrow particle-size distributions of the microcapsules were obtained. The fluid flow characteristics including fluid velocity field, turbulent kinetic energy field, and shear stress distribution for the different agitator paddle types in different reaction kettles were simulated using CFD technology. The correlations between simulated data and experimental results were analyzed. Significantly, the simulated average flow velocity was found to show good negative linear correlation with the average particle size of prepared microcapsules, with a correlation of y = –2.166x + 42.626.

Keywords: size fragrance; fragrance microcapsules; agitator; controlling size; size; microcapsules using

Journal Title: Particuology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.