LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ER: the Silk Road of interorganellar communication.

Photo by mcsheffrey from unsplash

Cellular adaptive responses arise from an array of spatially and temporally distinct biochemical interactions that modulate biological processes and reorganize subcellular structures tailored to the nature of stimulus. As such,… Click to show full abstract

Cellular adaptive responses arise from an array of spatially and temporally distinct biochemical interactions that modulate biological processes and reorganize subcellular structures tailored to the nature of stimulus. As such, cells have evolved elegantly and tightly regulated mechanisms to enable interorganellar communication in part through the dynamic readjustment of physical distance enabling the tethering between two closely apposed membranous organelles and thus formation of Membrane Contact Sites (MCSs). MCSs are dynamic and ubiquitous interorganellar structures that serve as regulatory interfaces to facilitate transmission of signals and to integrate synthesis of metabolic pathways such as lipids required for upholding cellular homeostasis in response to environmental and developmental inputs. Endoplasmic reticulum (ER) is the most copious endomembrane system that extend throughout the cell, and functions in production, processing, and transport of proteins and lipids, as well as in intracellular signaling. Reminiscent of the ancient Silk Road, ER connection to other membranous organelles via MCSs alters cellular landscape and serves as nexus for coordinating exchange of metabolites such as lipids, ions such as Ca2+, and other small molecules involved in maintaining cellular integrity under prevailing conditions. Delineating the molecular organization of the tethering complexes, molecular action of exchanged molecules and hence the nature of information transmitted will afford insight into underlying basis of interorganellar communication and shed light on the evolutionarily conserved function of ER as the ancient trans-kingdom Silk Road trafficking vital metabolites via the non-vesicular pathway.

Keywords: road interorganellar; silk road; interorganellar communication

Journal Title: Current opinion in plant biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.